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Abstract: - In this study, a nonlinear model of micro arch-beams under the action of electrostatic loadings with 
an initial air gap is presented. Based on the well-developed 3D beam theory proposed by Yang and Kuo [4], the 
arch beam is modelled as a series of uniform straight beam elements and the pull-in magnetic force is simulated 
as  an electric-induced force by an electrode lying. Then the nonlinear structural analysis of snap-through and 
pull-in stability for a simply supported shallow arch subjected to a concentrated electrostatic loading will be 
investigated. To tackle the path-dependent features of electric forces due to presence of air gaps and nonlinear 
deformations, this study regards the electric forces as pseudo-forces acting at the arch-beam and solves the 
structure equations using an incremental-iterative procedure. From the numerical results, the present approach 
demonstrates that the micro-arch beam has the capacity to withstand further electrostatic loading after the snap-
through jump. 
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1 Introduction 

With the advances of micro-
electromechanical systems (MEMS) technology 
in recent years, the applications of MEMS to a 
variety of micro-sensors and micro-actuators 
create complex machines with micrometer 
feature sizes, such as semi-conductor and micro 
mechanical electric devices [1-3]. For this 
reason, the geometrical nonlinear phenomena of 
micro-beams under electrostatic loadings 
become more pronounced, especially for the 
pull-in stability and post-buckling of a micro-
beam subjected to charged substrate. In this 
study, the pull-in stability of a micro-arch beam 
subject to a concentrated electro-static loading 
will be investigated. Based on the well-
developed 3D beam theory proposed by Yang 
and Kuo [4], the arch beam can be modelled as 
a series of uniform straight beam elements and 
then the snap-through and pull-in stability of the 
various arch beams under electrostatic loadings 
are demonstrated in the numerical studies. 
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Fig. 1. A micro-arch subject to a concentrated 

electric force 
 
2 Problem Formulation 

Figure 1 shows a micro-arch beam under the 
action of a concentrated electro-static loading, 
which is induced by an electrode lying under 
the arch-beam with a generalized electric force 
F as [1-3] 
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where e = the dielectric constant of air, b = 
width, t = thickness, = effective length of 
electric filed, d = the gap distance, and V = 
polarization voltage. For the purpose of 
illustration using finite element approach, the 
arch beam is modeled as a series of uniform 
straight beam elements based on the well-
developed 3D beam theory proposed by Yang 
and Kuo [4].  
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Fig. 2. Motion of body in 3D space. 

 
In an incremental nonlinear analysis based on 
the updated Lagrangian formulation, as shown 
in Fig. 2, the incremental element stiffness 
equation for a planar beam element from the 
last calculated configuration C1 to the current 
deformed configuration C2 can be written as 
      1 2[ ] [ ]e gk k u F F       (2) 
where [ke] = elastic stiffness matrix, [kg] = 
geometric stiffness matrix, {1F} = initial force 
vector acting at the C1 configuration, and {2F} 
=current force vector at the deformed 
configuration C2. The nodal displacement 
vector {u} for the incremental step from C1 to 
C2 in terms of the x1-y1 coordinates is  
  a a a b b bu u v u v  .  (3) 
Correspondingly, the initial force vector {1F} 
acting on the element is 

1{ }
T

xa za ya xb zb ybF F F M F F M  (4) 
By equilibrium, 

1{ }
T

xb zb ya xb zb ybF F F M F F M    (5) 
where Fxb = axial force, Fzb = shear force, Myb = 
bending moment, and ( ) /zb ya ybF M M L  .  
Before we proceed with derivation of the 

geometric stiffness matrix for the curved beam 
element, two important concepts must be 
mentioned here. First, as far as the rigid 
behavior is concerned, the behavior of a two-
node curved beam depends exclusively on the 
behavior of the two end points a and b, but not 
on the shape or elastic properties of the element, 
and thus is identical to the behavior of the 
straight beam consisting of the same end points 
a and b. Second, the geometric stiffness matrix 
for a two-dimensional straight beam can be 
derived in an approximate, but rather accurate 
manner, by considering only the rigid body 
rotations [4], due to the fact that that the rigid 
body displacements constitute a great portion of 
the buckling displacement of the beam elements. 
In this paper, the geometric stiffness matrix of a 
two-dimensional straight beam element based 
on the rigid concept will be first summarized.  

 
Fig. 3 Predictor phase of nonlinear analysis 

 
On the other hand, the electric force shown in 
Eq. (1) features the characteristics of path-
dependent due to presence of air gaps and 
nonlinear deformations, from which the 
geometric stiffness matrix of a beam element 
would become elaborate in finite element 
formulation stage. To tackle this problem, this 
study will regard the electric forces as pseudo-
forces acting at the arch-beam and then solve 
the structure equations using an incremental-
iterative procedure based on the concept of 
predictor, corrector and equilibrium checking 
phases, as plotted in Fig. 3. They are 
summarized as follows: 
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(1) Predictor phase 
To solve the structural displacement 

increments under given load increments from 
the structural equations. It is noted that the 
geometric stiffness matrices with nonlinear 
deformation for electric forces will be skipped 
in programming at this stage. 

 
(2) Corrector phase 

To recover the element forces at deformed 
configuration from the structural deformations 
via the predictor phase (see Fig. 4) 

 
Fig. 4 Corrector phase of nonlinear analysis 

 
(3) Equilibrium-checking phase 

To update the geometry and confirm the 
acting point of the concentrated electro-static 
force and compare the internal forces computed 
in the deformed configuration of the micro-arch 
with the total applied loads to obtain the 
unbalanced forces of the structure. It is noted 
that the deformation-dependent nature of 
electric forces has been taken into account in 
this phase. 
 

(4) Check the accuracy of solution for next 
iterations or incremental steps. 

 
3. Geometrical nonlinear analysis based on 

incremental-iterative procedure 

To solve the pull-in stability of a micro-arch 
beam under the action of a concentrated electro-
static force with a gap distance, an incremental-
iterative procedure is performed for geometric 
nonlinear analysis. Three key phases are 
essential to an incremental-iterative nonlinear 
analysis, i.e., the predictor, corrector and 

equilibrium checking phases [5]. The predictor 
phase is concerned with solution of the 
structural displacement increments under given 
load increments from the structural equations, 
which may affect the speed of convergence or 
the number of iterations. The corrector phase 
deals with recovery of the element forces at 
deformed configuration from the existing nodal 
forces and the element displacement increments 
made available from the structural displacement 
increments via the predictor phase. This phase 
determines primarily the accuracy of the 
solution. After all the element forces are 
computed and expressed in the deformed 
configuration of the structure, one can compare 
them with the total applied loads to obtain the 
unbalanced forces of the structure at deformed 
configuration, as is typical for the equilibrium-
checking phase. It is emphasized that the 
deformation-dependent effect of electric forces 
will be taken into account in this phase so that 
the geometric stiffness matrices with nonlinear 
deformations can be skipped in programming. 
Whenever the unbalanced forces are greater 
than preset tolerances, the unbalanced forces 
should be regarded as the applied loads and 
another iteration involving the three phases 
should be repeated. 
For the purpose of tracing the load-deflection 
response of a curved beam structure under the 
action of magnetic forces, the generalized 
displacement control (GDC) method proposed 
by Yang and Shieh [6] will be adopted for its 
general stability in dealing with multi loops in 
the post-buckling response. By this method, the 
load increment size is determined as a function 
of the general stiffness parameter (GSP) [6], 
which serves as a reliable indicator for 
reversing the direction of loading once a limit 
point is detected. 

 
Fig. 5 A simply supported micro-arch subject to 
an electric force with perfect/imperfect loading 
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4. Illustrated example 

The micro-arch beam depicted in Fig. 5 is a 
shallow arch and made of silicon with Young’s 
modulus E = 160 Gpa and Poisson ratio  = 
0.27. The properties of the arch-beam computed 
here are given as: b = 9  m, t = 2.2  m, e = 
8.854 × 10−12 F/m, d = 20  m, h = 5 m, L = 
500 m. The effective length of the electrode  
is 1  m. Two quasi-electrostatic loading cases 
are considered, one is that the stationary 
electrode is exactly located at the mid-span 
(perfect electrostatic loading) and the second 
located at the left side of 10 m from the mid-
span ( for imperfect electrostatic loading).  
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Fig. 6.  Load-deflection curves for the micro-

arch beam under electro-loadings. 
 
The geometrical nonlinear analysis procedure is 
carried out until the deformed arch-beam is 
quite closed to the surface of stationary 
electrode. The numerical results of midpoint 
displacement and electric force have been 
plotted in Fig. 6. The post-buckling phenomena 
of pull-in stability occur around the mid-span 
vertical displacement 2  m. Moreover, after the 
snap-through jump, the present approach 
demonstrates that the micro-arch has the 
capacity to withstand further electrostatic 
loading. 
 

 
Fig. 7 Relationship between the frequency and the 

displacement of the micro-arch 
 

Moreover, Fig.7 shows the relationship between 
the frequency and the displacement of the 
micro-arch under the action of a concentrated 
electric force. The present approach gives an 
efficient algorithm to detect the change of 
structural stiffness. 
 
5. Concluding remarks 

Nonlinear deformation analysis and eigenvalue 
solutions would consume much CPU time in 
numerical computations, especially for the 
computational problem by using an efficient 
algorithm to detect the change of structural 
stiffness.  

To circumvent the mathematical hindrance 
encountered in formulation of the electric force 
acting on a arch-beam by the conventional finite 
element approach, this study regards the electric 
forces as pseudo-forces acting at the arch-beam 
and then solve the structure equations using an 
incremental-iterative procedure. The advantage 
of the present approach is that there is no need 
to deal with the path-dependent force due to 
presence of air gaps and nonlinear deformations. 
From the numerical studies, the present 
approach demonstrates that the micro-arch 
beam has the capacity to withstand further 
electrostatic loading after the snap-through 
jump. 
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